Shape	Formulas for Area (A) and Circumference (C)
Triangle	$A=\frac{1}{2} b h=\frac{1}{2} \times$ base \times height
Rectangle $\quad \square$	$A=I w=$ length \times width
Trapezoid	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h=\frac{1}{2} \times$ sum of bases \times height
Parallelogram \square	$A=b h=$ base \times height
Circle	$\begin{aligned} & A=\pi r^{2}=\pi \times \text { square of radius } \\ & C=2 \pi r=2 \times \pi \times \text { radius } \end{aligned}$
Figure	Formulas for Volume (V) and Surface Area (SA)
Rectangular Prism	$\begin{aligned} V & =l w h=\text { length } \times \text { width } \times \text { height } \\ S A & =2 / w+2 h w+2 l h \\ & =2(\text { length } \times \text { width })+2(\text { height } \times \text { width })+2(\text { length } \times \text { height }) \end{aligned}$
General Prisms	$V=B h=$ area of base \times height $S A=$ sum of the areas of the faces
Right Circular Cylinder	$V=B h=$ area of base \times height $S A=2 B+C h=(2 \times$ area of base $)+($ circumference \times height $)$
Right Pyramid	$\begin{aligned} V & =\frac{1}{3} B h=\frac{1}{3} \times \text { area of base } \times \text { height } \\ S A & =B+\frac{1}{2} P \ell \\ & =\text { area of base }+\left(\frac{1}{2} \times \text { perimeter of base } \times \text { slant height }\right) \end{aligned}$
Right Circular Cone	$\begin{aligned} V & =\frac{1}{3} B h=\frac{1}{3} \times \text { area of base } \times \text { height } \\ S A & =B+\frac{1}{2} C \ell=\text { area of base }+\left(\frac{1}{2} \times \text { circumference } \times \text { slant height }\right) \end{aligned}$
Sphere	$\begin{aligned} V & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \pi \times \text { cube of radius } \\ S A & =4 \pi r^{2}=4 \times \pi \times \text { square of radius } \end{aligned}$

Equations of a Line

Slope-Intercept Form: $\quad y=m x+b$
where $m=$ slope and $b=y$-intercept

Point-Slope Form: $\quad y-y_{1}=m\left(x-x_{1}\right)$
where $m=$ slope, $\left(x_{1}, y_{1}\right)=$ point on line

Combinations and Permutations

$$
n C r=\frac{n!}{r!(n-r)!} \quad n P r=\frac{n!}{(n-r)!}
$$

Formulas for Right Triangles

$$
\begin{aligned}
& \sin x=\frac{a}{c}=\left(\frac{\text { opp }}{\text { hyp }}\right) \\
& \cos x=\frac{b}{c}=\left(\frac{\text { adj }}{\text { hyp }}\right) \\
& \tan x=\frac{a}{b}=\left(\frac{\text { opp }}{\text { adj }}\right)
\end{aligned}
$$

Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

Special Right Triangles

Coordinate Geometry Formulas

Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two points in the plane.
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ where $x_{2} \neq x_{1}$
midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Polygon Angle Formulas

Sum of degree measures of the interior angles of a polygon:

$$
180(n-2)
$$

Degree measure of an interior angle of a regular polygon:

$$
\frac{180(n-2)}{n}
$$

where n is the number of sides of the polygon

Interest Formulas

Simple Interest: $A=P(1+r t)$
Compound Interest: $A=P\left(1+\frac{r}{n}\right)^{n t}$
$A=$ amount (including interest)
$P=$ principal
$r=$ interest rate (expressed as a decimal)
$n=$ number of compoundings per year
$t=$ number of years

Quadratic Equations

Let $a x^{2}+b x+c=0$, where $a \neq 0$.
Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
x-coordinate of vertex $=-\frac{b}{2 a}$

Distance Traveled

$d=r t$
distance $=$ rate \times time

